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Thouless-Anderson-Palmer equations for neural networks
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Previous derivation of the Thouless-Anderson-Pal(fiéfP) equations for the Hopfield model by the cavity
method yielded results that were inconsistent with those of the perturbation theory as well as the results derived
by the replica theory of the model. Here we present a derivation of the TAP equation for the Hopfield model
by the cavity method and show that it agrees with the form derived by perturbation theory. We also use the
cavity method to derive TAP equations for the pseudoinverse neural network model. These equations are
consistent with the results of the replica theory of these models.

PACS numbe(s): 87.18.Sn, 75.10.Nr, 84.35i

I. INTRODUCTION line of the paper is as follows. We begin by describing the
cavity method for the relatively simple case of the SK
Neural network models have been studied extensively ughfinite-range spin glass modgl0]. In Sec. Ill we extend the
ing statistical mechanical methods developed for the mearimethod to derive TAP equations for the Hopfield model, and
field theory of spin glasses. Amit, Gutfreund, and Sompolin-show that our results are in agreement with the equations
sky [1] have applied the replica methof2] for the derivgd by Nakanishi anq Takayma. In Sec. !V the TAP
investigation of the Hopfield mod¢8]. The complementary €duations for the pseudoinverse mofi#] are derived. Our
approach of Thouless, Anderson, and PalfdérTAP) was conclusions are presented in the last section.
applied to the Hopfield model by Mard, Parisi, and Vira-
soro[5], who have used the cavity method to derive TAP Il. TAP EQUATIONS FOR THE
equations for the model. This method consists of two steps. SHERRINGTON-KIRKPATRICK MODEL
First, a new spin is added to the system, and the distribution
of the local field induced on it is characterized, in terms of
the variance of the overlaps of the system states with the The model system is a system Nflsing spins governed
memorized patterns. This variance is evaluated by adding By @ Hamiltonian

A. Definition of the model

new pattern to the system. In Rg5] the cavity method was N
applied using certain assumptions about the ultrametric H(N)z—} S Jss 1)
structure of the phase space of the system. However, the 252, T

TAP equations derived in Ref5] are inconsistent with the

predictions of the replica solution of the Hopfield mofte]. ~ The upper indexN) denotes that it relates to a system with

In particular, the two theories yield different values of the spins. TheJ;;’s are independent random Gaussian variables,

transition temperature of the model. This last problem haglistributed according to

been noted recently by Nakanishi and Takayd®la They

presented a derivation of TAP equations for the Hopfield i

model, following the method introduced by Plefkg for the P(Jij)= ﬁex T2 32 @

Sherrington-KirkpatricK SK) spin-glass model. This method

is based on an expansion of the Gibbs potential in powers fnd Jij=J;i -

the exchange coupling. The TAP equations derived by Na-

kanishi aqd Takayama differed from thqse of Med et aI.' B. Adding a spin to the system

and are similar to those presented previously by Fukai and ) )

Shiino[8], in particular, they predict a transition temperature ~ Following Ref.[5] we add a spin to the system and cal-

that agrees with the replica solution. The origin of the dis-culate its thermal average in th&l ¢ 1)-spin system as a

crepancy between the two derivations of TAP equations refunction of averages in thi-spin system. Adding a spisy

mained unclear. at site zero, we also add a set of interaction constants
In this paper we reexamine the derivation of the TAP{Joj}}-, that are distributed according to E@). The Hamil-

equations by the cavity method. Our goals are first, to detonian of the N+ 1)-spin system is defined

velop an appropriate cavity method that does not depend on

additional ultrametric assumptions; second, to resolve the ap- HO D= - hoSo, (€©)
parent discrepancy between the cavity method and the results N

derived by perturbation theory as well as by the replica ho=S Jois @
theory. Finally, we will use the cavity method to derive the 0 =1 0= -

form of the TAP equations for the more complex pseudoin-
verse mode]9] of associative memory. This model has beenThe states of the system are distributed according to a Gibbs
investigated previously by the replica theory only. The out-distribution with a HamiltoniarHN*1),
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N

PN ({si}iLg) =5 —exp(— BHN"Y), ) ((0ho)?)n= 2, Ja((05)Hn=T2(1=aw), (19

ZN+1

ZN+1=TI'{Si}iN:O exp(— gHNTD), (6) 1 N

In=ry 2 (SR (16
From the distribution of states of theN{-1)-spin system, =1
Eqg. (5), we obtain the joint probability distribution of the

) . . The last lity in Eq(1 Its f If- ing i
local field and spin at site zero, e last equality in Eq(15) results from self-averaging in

the largeN limit. We now assume that in thi-spin system
N the local field at site zero is a Gaussian random variable. This
PN*1(h,,S0) = LTr{S_}N [5< ho— E JOij) assumption is supported by the fact that in lepin system
Inyy Vit =1 hgy is a sum ofN independent random variables. We further
assume that for largd we can replacgy by its value in the

x exp(— BHN+D) | @) thermodynamic limit, i.e., thatjy=q. We can, therefore,

write

The dependence is via Eg.(3). Introducin 1 ho—(h 2

P B q.(3) g PN(hy) = : ex 02< Y B
1 N V2mJ4(1-q) 2J5(1—-q)

PM(ho) = Z_NTr{Si}iNl[ 5( ho—;l JOJSJ)eX“_BH(N)) ' D. TAP equations for the local magnetization
(8) Substituting Eq(17) into Egs.(11) and(12), we obtain
Eq. (7) can be written as (so)n+1=tant B(ho)n], (18

1 = 2 —

PN+l(hO!SO):ZquBhOSO)PN(hO)! (9) <h0>N+l <h0>N+B‘] (1 q)<SO>N+l' (19)

Substituting Eq.(19) into Eq. (18), we retrieve the known

Znat TAP equations for the SK modé|4,5])
{= N =(2 coshBhg)y - (10
<Si>:tam’{,3( > Ji(s)—BFA-a)s)||. (20

We use(- - - ) to denote thermal averaging with respect to 171

the N-spin system. Using Ed9), the thermal average of the

spin at site zero is given by Ill. TAP EQUATIONS FOR THE HOPFIELD MODEL

(sinhBhg)y A. Definition of the model
— N+1 —
<S0>N+1_Trso SOJ P (hO'SO)dh0_<Coshﬁho>N' The model system is a system Nfbinary neurons that

(11)  storesp memory patterng¢&l} (i=1,... N,u=1,...p)
in the connection matrix. The Hamiltonian of the system is

Similarly,
1 N
(ho coshBho)y HNV=—2 X Jiss;, (21
(ho)n+1= . (12 2i=1
(coshBhg)y
l p
C. Statistics of the local field Ji=y 21 &el. (22)
=

The first two moments of the local field at site zero in the
N-spin system are The ¢’s are independent random binary variablgs= + 1
with zero mean. We are interested in the limithNbf~ o and

N
_ p— <, such that the ratiaz=p/N remains finite.
<ho>N—JZ1 Joi{(SiIn (13
B. Adding a neuron to the system
N
The first step of the derivation of TAP equations for this
((8ho) >N—szl J0idoj(9S; 08N » 149 model is to add a neuros, at site zero and to adg}h

to the p patterns. The Hamiltonian of theN@1)-neuron
whereds;=s;—(s;). TheJy;’s are random independent vari- System is
ables of the order of 3N with zero mean. Fori
#], (8s;8s;)y is of the order of 1{N. Since(ss; 8s;)n and
Jo; are independent, the contribution of the]j terms in Eq. N
(14) is of the or_der of 1(/N. We can, therefore, approximate ho= z JoiS; (24)
Eq. (14) by thei=j terms =1

HN*D=HMN sy, (23
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1 p
Joj=15 X EhEr. (25)
N =1
As in the SK model the joint probability of the local field and
the neuron state at site zero can be written as

PN**(ho,80) = %exp(ﬂhoso)PN(ho), (26)

VANEE
AN,

{= =(2coshBhg)y . 27

Hence, Egs(11) and(12) hold also for this model.
C. Statistics of the local field

The mean and variance of the local field are

N
(ho>N:JZl Joj{SiIn (28

N
(( 5ho)2>N:ijE:l Joidoj{ IS 8S))n= MEV §oéo(om,om, )y,
(29

wherem,, is the overlap with patterfe#N |,

N
Z &l'si.

(30

ZIH

,u

For u#v we have(sm,sm,)=0(1/N*?), hence we can
approximate Eq(29) by the contributions of the. = v terms,
ie.,

<<5ho>2>N=§ ((8m)?)=ry. (3D)
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tonian[5]. We defineH,, to be the Hamiltonian of a system
with N neurons angb memory patterns
) Sisj .

1 12
22 (N
Adding pattern{ £’} to the Hamiltonian, we define

> g
u=1

(36)

1 1
Hps1=Hp= 5 .2, Eess=H,— EN(mo)z, (37)
wheremy is the overlap of the state with the new pattern.
The probability distribution ofmg, with respect to thermal
fluctuations in the system governed By ;, can be written

in the form of

Since{&4} are random and independent of the distribution of

states in théN-neuron system we can approxima¥ by

(ho— <ho>N) )

(32

PN(ho) = J_ P(

wherer is the largeN limit of ry. Substituting Eq(32) into
Egs.(11) and(12), we obtain

(so)n+1=tanh B{ho)n],

(ho)n+1=(ho)n+ Br{So)n+1-

Substituting Eq(34) into Eq.(33), we obtain the TAP equa-
tions for local magnetization of the Hopfield model

(33

(39

(39

(sttan{,B(; Jij<sj>—,8r(si>) )

D. Adding a memory pattern to the Hamiltonian

In order to evaluate we use the cavity method a second
time, this time by adding a memory pattern to the Hamil-

1 1
PP (mg) = Zexp(EBN(moF) PP(mp). (38
In the system witiH, we have
(m0>p=0, (39
2 1 00 1
((8mg)?)p=— 2 §£0(85185)p= 1-(1—q). (40
N2 73 N
AssumingPP(m,) is Gaussian, we obtain
1 1 1
p+1 —— _ - - 2
PP™3(mg) 1z ex;{ 2N 1-q ﬂ)mo} 41
yielding
) 1 1—q
((6mg) >p+l:N 1-5(1-q) (42)
Substituting Eq(42) for each of the terms in Eq¢31) yields
a(1-q)
- v 43
1 A1) “3

Equations(35) and (43) agree with the result of Fukai and
Shiino[8] and Nakanishi and Takayan@].

IV. TAP EQUATIONS FOR THE PSEUDOINVERSE
MODEL

A. Definition of the model

As in the Hopfield model, the interaction matrix is de-
signed to store p-binary memory patterns{&F} i
=1,...N, u=1,...p. The é's are independent random
binary variables with zero mean. We start by defining the
N-neuron system

N
1
HM=-2 Z INs;s;, (44)
i,j=1
<N>— E gcmy e, (45)
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N
1
(N)_— v
Cl=p 2 &€ (46)
As shown in Ref[9] the Hamiltonian can be written as
HN = — E 2 4
=72 m,a,, (47
where

a,=> [C™M] Im,. (48)

B. Adding a neuron to the system

Adding a neuron at site zero afdg}h_; we define

H(N+l):_ 20 J(N+1)Sisj, (49)
2]
1
(N+1) _ (N+1)1-1gv
I V=Rt 2 SIC L (50
1 N
(N+1) ey
Cl V=nr1 > e (51)
We observe that
N+
(N+1)7-1_ (N)1-1
[CN) (e -

X[c<N>]—1§oéa[c<N>]—l), (52

1. >
r=NéolCM] o, (53)

wherefo is a p-dimensional column vector of the memory
patterns at site zero, arng is its transpose row vector. In

Appendix A we show that
Y=o (54)
wherea=p/N. We denote
1 N
h§Y=N 2, 2 6ICMLuts=2 ga,. (69

where the upper indefN) here indicates the use 6 and
not CN*1)_ Using Eq.(52), HN*Y can be written as

(h(N))Z h(N)SO
(N+1)_ 1y (N)
H H +2(1+7) 1+y, (56)
hence
1 Bh§M)2  ph{Ms,
N+1/}(N) _ - _ N R(N)
P™(hy,s0) é“ex 2(1+7) 1ty P (hg™),
(57
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where{ is a normalization constant. Using E&7) we ob-
tain

(st { 2ex BEN?) [ BhEVsg
O/N+1T ¢ 2(1+9) Ty )/
(58)
1 A2\ [ BhG”
(N) — (N)
(hgIn+1 §<2ho ex T2+ cos 1ry)]
(59
C. Statistics of the local field
The first two moments oh{™) are
(h)n=2 (@, (60
N

((onE%) =3 &30, 08,0= 2 (92, In=Txy.
(61)

Assuming thatPN(h{V) is Gaussian,

(N) _ (r(N)
PN(hg) = o <h>

J— "( ) (©2

wherex is the largeN limit of xy. We can calculatésg)y 1
and(h{¥), ; using Eqs(58) and(59),

By
<30>N+1—tam‘(—1+y+x ,

(63

1+vy X
<h8N)>N+1=m<hBN)>N+ T+ xS (64

D. TAP equations for the pseudoinverse model

Using Eq.(52) we obtain an expression for the local field
at site zero in theN+ 1)-neuron system

N
e ,Zl MEV EICN D] e (SN

"1ty h§¥ N1 (65)
Using Eqgs.(64) and (65), we obtain

(h§")n
1+y+x

(So)n+1

<hg)N+1)>N+1: +(1+,y)2'

(66)

Substituting Eq(66) into Eq.(63), we obtain the TAP equa-
tions for the pseudoinverse model
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where

(67) J:%[1+C—\/(1—C)2+4aC]. (72

X
<3i>:tam‘{,3(; ‘]ij<sj>_(l+y)(1+y+x)<si>)

E. Adding a memory pattern to the Hamiltonian These equations agree with the results of the replica theory

The evaluation ok is done by using the cavity method a for the retrieval state in this model, see E¢&12 and(3.9
second time, adding a memory pattern to the Hamiltonianin Ref.[9]. In conclusion, we believe that the TAP equations
Details of the calculation are explained in Appendix B. Thederived here for neural network models of associative

result of the calculation yields memory are equivalent to the replica theory for these mod-
els.
C-1++(1-C)%+4aC
X= -, (68
C+1—\(1-C)?+4aC ACKNOWLEDGMENTS
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where

V. DISCUSSION APPENDIX A: ESTIMATION OF vy

d We now calculate the value of for a typical choice of

Previous application of the cavity method to the Hopfiel
&’s. For largeN, we can evaluate

model[5] yielded TAP equations with a cavity term that was
in disagreement with the equations derived by perturbation

theory [6]. Mézard et al. [5] applied the cavity method on y= i TC™Y (A1)
soft variables generated by a Hubbard-Stantonovitch trans- N

formation of the original Ising system. However, the relation

between the statistics of the soft variables and the spin varifo calculate the trace of %, we use the result for the ei-
ables must be treated with care. If these relations are takegenvalues spectrum of the Hopfield matrix; fak;
appropriately, then their method yields the same equations as(l/N)Eﬁﬁlgi"gf‘(l— ij) we have

derived by perturbation theory. Here we have avoided using

the Hubbard-Stantonovitch transformation all together and pg()\)+(1—a) SN+a), a<l

applied the cavity method directly on the Ising spin system. YN = IO a1 (A2)
In addition, we have shown that the correct TAP equations Pol), '
can be derived by the cavity method without additional as-

- ini - Vda—(1-)\)?
sumptions about the structure of the minima or their energy IN) = (A3)
distribution. Po 27(At+a)

We now briefly discuss the correspondence between the
replica theory and the TAP equations. In the SK model, thidn our case, we takex’=1/a and add the diagonal term.
correspondence has been extensively stufbédAssuming Performing some algebra we obtain
an ultrametric structure of the TAP solutions yields a mean
field theory that is equivalent to Parisi's replica solut[@mh a
A similar study for the neural network models has not been Y1 o (Ad)
made. Here we note two points of agreement between the
theories. Equation&5) and(43) for the Hopfield model pre-
dict a second-order transition from a paramagnetic state APPENDIX B: CALCULATION OF = X

(sjy=0 to a spin-glass state in whigls;) are different from The partition function of a system ® neurons withp-

zero but they do not have a macroscopic overlap with any o5 e memory patterns takes the following form:
the patterns. This transition occurs at a temperalye 1

+a, as was shown by Nakanishi and Takaydiigwhich 1 p
agrees with the replica theof]. In the case of the pseudo- Zp=Tr{s_}exp<—BN > mﬂC;VlmV)
inverse model, Eq967), (45), and(46) admit a solution of ' 20 =
the form
p 1 F
(sy=mék . (70) =Tris) f I dx, exp( —> 2 X,CuX,
! n=1 2 w,v=1

This corresponds to a retrieval state in which the sign of the p
local magnetizations is identical to the pattgrn Substitut- +VBN Y, meM). (B1)
ing this ansatz in Eq(67), and using Egs(B15) and (A4) p=1
yields the following mean-field equation fom:
Adding a new patter{¢”}; to the Hamiltonian, we can
m=tanh(BJm), (71)  write
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PP*1(Xo,Y0,Mp) = = exp — EX?)_XOYO

1 r{ 1 Integrating ovely, in Eq. (B2) yields
{

+JB_Nxomo)P"(yo,mo), (B2) Pp“(b‘xo,ﬁmo):%ex —%(&0,5m0)

whereyozEzzlcoMxﬂ. AssumingPP(y,,my) is Gaussian

we can write 1 b
1-=  —JBN-=
1 1 a b\/dyg « a a
PP(8yq,mo)= —expg — 5(8yo,Mp) ' b b2
i 2 b c/\mg ~ JBN-— e —
(B3) a a
a b)_l_( ((8Y0)%)p <5yo5m0>p) B4 s
b ¢ (8yodmg)p, ((5mo)2>p ’ X 5m0) (B10)
wheredy,=Yyo—(Yo)p. We expecim, not to condense, i.e., °
(mo)p,=0. From Eq.(B1), {x,} are random variables with
Gaussian fluctuations arour,, hence Here Smo=mo—(Mg)y 1 and dXo=Xo—(Xo)ps1. We de-
SX. SX.) = BN(Sa. Sa. ).+ C L B noteU= B (dm, da,),.
(%,.0%,)p=BN( 08,08, )p+C, (B5) Using Eﬂqs. (#B7)fL (B8), and (B9) we calculate
<5XM5mM>P: \/IB_N< 5aM5mM>p' (B6) <5Xo5mo>p+1 from Eq.(B10) in terms ofU, and then solve

the self-consistent equation

Using Eqgs.(B5) and(B6) we obtain
U= aBN(8XodMg) p. 1 (B11)

1 1
((8mo)2)p="7 2 £6](8585)p=(1-0). (BD  yielding

1
1 U=-[C—1+(1-C)Z+4aC], (B12)
((8Y0)%)p= ME N 2] EEVEIEN(O%,0%,)p 2 ¢

where

1
N ME C (8%, 8%,)p C=8(1-q). (B13)

From Eg.(B10) we obtain
=B (dm,da,),+a, (B8)
o

((6x )2>=—U (B14)
0 a(C—U)’

1
S = 0:0¢1( 5% Ss:
(8¥oMopy N2 I?Jn E4 6 (%080, hence

! Trfc?
N r[ ]

(B9) (B15

1
% 5 (% 0m,)p \/B/N%: (dm,da,),. X:N% {<(6X“)2>_[C71]MM}:TU)_
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