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Thouless-Anderson-Palmer equations for neural networks
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Previous derivation of the Thouless-Anderson-Palmer~TAP! equations for the Hopfield model by the cavity
method yielded results that were inconsistent with those of the perturbation theory as well as the results derived
by the replica theory of the model. Here we present a derivation of the TAP equation for the Hopfield model
by the cavity method and show that it agrees with the form derived by perturbation theory. We also use the
cavity method to derive TAP equations for the pseudoinverse neural network model. These equations are
consistent with the results of the replica theory of these models.

PACS number~s!: 87.18.Sn, 75.10.Nr, 84.35.1i
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I. INTRODUCTION

Neural network models have been studied extensively
ing statistical mechanical methods developed for the me
field theory of spin glasses. Amit, Gutfreund, and Sompo
sky @1# have applied the replica method@2# for the
investigation of the Hopfield model@3#. The complementary
approach of Thouless, Anderson, and Palmer@4# ~TAP! was
applied to the Hopfield model by Me´zard, Parisi, and Vira-
soro @5#, who have used the cavity method to derive TA
equations for the model. This method consists of two ste
First, a new spin is added to the system, and the distribu
of the local field induced on it is characterized, in terms
the variance of the overlaps of the system states with
memorized patterns. This variance is evaluated by addin
new pattern to the system. In Ref.@5# the cavity method was
applied using certain assumptions about the ultrame
structure of the phase space of the system. However,
TAP equations derived in Ref.@5# are inconsistent with the
predictions of the replica solution of the Hopfield model@1#.
In particular, the two theories yield different values of t
transition temperature of the model. This last problem
been noted recently by Nakanishi and Takayama@6#. They
presented a derivation of TAP equations for the Hopfi
model, following the method introduced by Plefka@7# for the
Sherrington-Kirkpatrick~SK! spin-glass model. This metho
is based on an expansion of the Gibbs potential in power
the exchange coupling. The TAP equations derived by
kanishi and Takayama differed from those of Me´zard et al.
and are similar to those presented previously by Fukai
Shiino @8#, in particular, they predict a transition temperatu
that agrees with the replica solution. The origin of the d
crepancy between the two derivations of TAP equations
mained unclear.

In this paper we reexamine the derivation of the TA
equations by the cavity method. Our goals are first, to
velop an appropriate cavity method that does not depend
additional ultrametric assumptions; second, to resolve the
parent discrepancy between the cavity method and the re
derived by perturbation theory as well as by the repl
theory. Finally, we will use the cavity method to derive t
form of the TAP equations for the more complex pseudo
verse model@9# of associative memory. This model has be
investigated previously by the replica theory only. The o
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line of the paper is as follows. We begin by describing t
cavity method for the relatively simple case of the S
infinite-range spin glass model@10#. In Sec. III we extend the
method to derive TAP equations for the Hopfield model, a
show that our results are in agreement with the equati
derived by Nakanishi and Takayma. In Sec. IV the TA
equations for the pseudoinverse model@9# are derived. Our
conclusions are presented in the last section.

II. TAP EQUATIONS FOR THE
SHERRINGTON-KIRKPATRICK MODEL

A. Definition of the model

The model system is a system ofN Ising spins governed
by a Hamiltonian

H (N)52
1

2 (
i , j 51

N

Ji j sisj . ~1!

The upper index~N! denotes that it relates to a system withN
spins. TheJi j ’s are independent random Gaussian variab
distributed according to

P~Ji j !5
AN

A2pJ
expS 2

1

2

NJi j
2

J2 D ~2!

andJi j 5Jji .

B. Adding a spin to the system

Following Ref. @5# we add a spin to the system and ca
culate its thermal average in the (N11)-spin system as a
function of averages in theN-spin system. Adding a spins0
at site zero, we also add a set of interaction consta
$J0 j% j 51

N that are distributed according to Eq.~2!. The Hamil-
tonian of the (N11)-spin system is defined

H (N11)5H (N)2h0s0 , ~3!

h05(
j 51

N

J0 j sj . ~4!

The states of the system are distributed according to a G
distribution with a HamiltonianH (N11),
1839 ©2000 The American Physical Society
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1840 PRE 61MAOZ SHAMIR AND HAIM SOMPOLINSKY
PN11~$si% i 50
N !5

1

ZN11
exp~2bH (N11)!, ~5!

ZN115Tr$si % i 50
N exp~2bH (N11)!. ~6!

From the distribution of states of the (N11)-spin system,
Eq. ~5!, we obtain the joint probability distribution of th
local field and spin at site zero,

PN11~h0 ,s0!5
1

ZN11
Tr$si % i 51

N FdS h02(
j 51

N

J0 j sj D
3exp~2bH (N11)!G . ~7!

The dependence ons0 is via Eq.~3!. Introducing

PN~h0!5
1

ZN
Tr$si % i 51

N FdS h02(
j 51

N

J0 j sj D exp~2bH (N)!G ,

~8!

Eq. ~7! can be written as

PN11~h0 ,s0!5
1

z
exp~bh0s0!PN~h0!, ~9!

z5
ZN11

ZN
5^2 coshbh0&N . ~10!

We use^•••&N to denote thermal averaging with respect
the N-spin system. Using Eq.~9!, the thermal average of th
spin at site zero is given by

^s0&N115Trs0
s0E PN11~h0 ,s0!dh05

^sinhbh0&N

^coshbh0&N
.

~11!

Similarly,

^h0&N115
^h0 coshbh0&N

^coshbh0&N
. ~12!

C. Statistics of the local field

The first two moments of the local field at site zero in t
N-spin system are

^h0&N5(
j 51

N

J0 j^sj&N , ~13!

^~dh0!2&N5 (
i , j 51

N

J0iJ0 j^dsidsj&N , ~14!

wheredsi[si2^si&. TheJ0 j ’s are random independent var
ables of the order of 1/AN with zero mean. For i
Þ j , ^dsidsj&N is of the order of 1/AN. Since^dsidsj&N and
J0 j are independent, the contribution of theiÞ j terms in Eq.
~14! is of the order of 1/AN. We can, therefore, approximat
Eq. ~14! by the i 5 j terms
^~dh0!2&N5(
i 51

N

J0i
2 ^~dsi !

2&N5J2~12qN!, ~15!

qN5
1

N (
i 51

N

^si&N
2 . ~16!

The last equality in Eq.~15! results from self-averaging in
the large-N limit. We now assume that in theN-spin system
the local field at site zero is a Gaussian random variable. T
assumption is supported by the fact that in theN-spin system
h0 is a sum ofN independent random variables. We furth
assume that for largeN we can replaceqN by its value in the
thermodynamic limit, i.e., thatqN5q. We can, therefore,
write

PN~h0!5
1

A2pJ2~12q!
expS 2

~h02^h0&N!2

2J2~12q!
D . ~17!

D. TAP equations for the local magnetization

Substituting Eq.~17! into Eqs.~11! and ~12!, we obtain

^s0&N115tanh@b^h0&N#, ~18!

^h0&N115^h0&N1bJ2~12q!^s0&N11 . ~19!

Substituting Eq.~19! into Eq. ~18!, we retrieve the known
TAP equations for the SK model~@4,5#!

^si&5tanhFbS (
j Þ i

Ji j ^sj&2bJ2~12q!^si& D G . ~20!

III. TAP EQUATIONS FOR THE HOPFIELD MODEL

A. Definition of the model

The model system is a system ofN binary neurons that
storesp memory patterns$j i

m% ( i 51, . . . ,N,m51, . . . ,p)
in the connection matrix. The Hamiltonian of the system

H (N)52
1

2 (
i , j 51

N

Ji j sisj , ~21!

Ji j 5
1

N (
m51

p

j i
mj j

m . ~22!

The j ’s are independent random binary variablesj i
m561

with zero mean. We are interested in the limit ofN→` and
p→`, such that the ratioa5p/N remains finite.

B. Adding a neuron to the system

The first step of the derivation of TAP equations for th
model is to add a neurons0 at site zero and to add$j0

m%m51
p

to the p patterns. The Hamiltonian of the (N11)-neuron
system is

H (N11)5H (N)2h0s0 , ~23!

h05(
j 51

N

J0 j sj , ~24!



d

o

-

d
il

n.
l

d

e-

he

PRE 61 1841THOULESS-ANDERSON-PALMER EQUATIONS FOR . . .
J0 j5
1

N (
m51

p

j0
mj j

m . ~25!

As in the SK model the joint probability of the local field an
the neuron state at site zero can be written as

PN11~h0 ,s0!5
1

z
exp~bh0s0!PN~h0!, ~26!

z5
ZN11

ZN
5^2coshbh0&N . ~27!

Hence, Eqs.~11! and ~12! hold also for this model.

C. Statistics of the local field

The mean and variance of the local field are

^h0&N5(
j 51

N

J0 j^sj&N , ~28!

^~dh0!2&N5 (
i , j 51

N

J0iJ0 j^dsidsj&N5(
m,n

j0
mj0

n^dmmdmn&N ,

~29!

wheremm is the overlap with pattern$j i
m% i 51

N ,

mm5
1

N (
i 51

N

j i
msi . ~30!

For mÞn we have^dmmdmn&5O(1/N3/2), hence we can
approximate Eq.~29! by the contributions of them5n terms,
i.e.,

^~dh0!2&N5(
m

^~dmm!2&N[r N . ~31!

Since$j0
m% are random and independent of the distribution

states in theN-neuron system we can approximatePN by

PN~h0!5
1

A2pr
expS 2

~h02^h0&N!2

2r D , ~32!

wherer is the large-N limit of r N . Substituting Eq.~32! into
Eqs.~11! and ~12!, we obtain

^s0&N115tanh@b^h0&N#, ~33!

^h0&N115^h0&N1br ^s0&N11 . ~34!

Substituting Eq.~34! into Eq.~33!, we obtain the TAP equa
tions for local magnetization of the Hopfield model

^si&5tanhFbS (
j Þ i

Ji j ^sj&2br ^si& D G . ~35!

D. Adding a memory pattern to the Hamiltonian

In order to evaluater we use the cavity method a secon
time, this time by adding a memory pattern to the Ham
f

-

tonian @5#. We defineHp to be the Hamiltonian of a system
with N neurons andp memory patterns

Hp52
1

2 (
i , j

S 1

N (
m51

p

j i
mj j

mD sisj . ~36!

Adding pattern$j i
0% i 51

N to the Hamiltonian, we define

Hp115Hp2
1

2N (
i , j

j i
0j j

0sisj5Hp2
1

2
N~m0!2, ~37!

wherem0 is the overlap of the state with the new patter
The probability distribution ofm0, with respect to therma
fluctuations in the system governed byHp11, can be written
in the form of

Pp11~m0!5
1

z8
expS 1

2
bN~m0!2D Pp~m0!. ~38!

In the system withHp we have

^m0&p50, ~39!

^~dm0!2&p5
1

N2 (
i , j

j i
0j j

0^dsidsj&p5
1

N
~12q!. ~40!

AssumingPp(m0) is Gaussian, we obtain

Pp11~m0!5
1

z8
expF2

1

2
NS 1

12q
2b Dm0

2G ~41!

yielding

^~dm0!2&p115
1

N

12q

12b~12q!
. ~42!

Substituting Eq.~42! for each of the terms in Eq.~31! yields

r 5
a~12q!

12b~12q!
. ~43!

Equations~35! and ~43! agree with the result of Fukai an
Shiino @8# and Nakanishi and Takayama@6#.

IV. TAP EQUATIONS FOR THE PSEUDOINVERSE
MODEL

A. Definition of the model

As in the Hopfield model, the interaction matrix is d
signed to store p-binary memory patterns $j i

m% i
51, . . . ,N, m51, . . . ,p. The j ’s are independent random
binary variables with zero mean. We start by defining t
N-neuron system

H (N)52
1

2 (
i , j 51

N

Ji j
(N)sisj , ~44!

Ji j
(N)5

1

N (
m,n

j i
m@C(N)#mn

21j j
n , ~45!
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Cmn
(N)5

1

N (
i 51

N

j i
mj i

n . ~46!

As shown in Ref.@9# the Hamiltonian can be written as

H (N)52
N

2 (
m

mmam , ~47!

where

am5(
n

@C(N)#mn
21mn . ~48!

B. Adding a neuron to the system

Adding a neuron at site zero and$j0
m%m51

p we define

H (N11)52
1

2 (
i , j 50

N

Ji j
(N11)sisj , ~49!

Ji j
(N11)5

1

N11 (
m,n

j i
m@C(N11)#mn

21j j
n , ~50!

Cmn
(N11)5

1

N11 (
i 50

N

j i
mj i

n . ~51!

We observe that

@C(N11)#215
N11

N S @C(N)#212
1

11g

1

N

3@C(N)#21jW0jW0
t @C(N)#21D , ~52!

g5
1

N
jW0

t @C(N)#21jW0 , ~53!

wherejW0 is a p-dimensional column vector of the memo
patterns at site zero, andjW0

t is its transpose row vector. In
Appendix A we show that

g5
a

12a
, ~54!

wherea5p/N. We denote

h0
(N)5

1

N (
j 51

N

(
mn

j0
m@C(N)#mn

21j j
nsj5(

m
j0

mam , ~55!

where the upper index~N! here indicates the use ofC(N) and
not C(N11). Using Eq.~52!, H (N11) can be written as

H (N11)5H (N)1
~h0

(N)!2

2~11g!
2

h0
(N)s0

11g
, ~56!

hence

PN11~h0
(N) ,s0!5

1

z
expS 2

b~h0
(N)!2

2~11g!
1

bh0
(N)s0

11g D PN~h0
(N)!,

~57!
wherez is a normalization constant. Using Eq.~57! we ob-
tain

^s0&N115
1

j K 2expS 2
b(h0

(N))2

2(11g) D sinhS bh0
(N)s0

11g D L
N

,

~58!

^h0
(N)&N115

1

j K 2h0
~N!expS 2

b(h0
(N))2

2(11g) D coshS bh0
(N)

11g D L .

~59!

C. Statistics of the local field

The first two moments ofh0
(N) are

^h0
(N)&N5(

m
j0

m^am&N, ~60!

^~dh0
(N)!2&N5(

m,n
j0

mj0
n^damdam&N5(

m
^~dam!2&N[TxN .

~61!

Assuming thatPN(h0
(N)) is Gaussian,

PN~h0
(N)!5

1

A2pTx
expS 2

~h0
(N)2^h0

(N)&N!2

2Tx D , ~62!

wherex is the large-N limit of xN . We can calculatês0&N11

and ^h0
(N)&N11 using Eqs.~58! and ~59!,

^s0&N115tanhS b^h0
(N)&N

11g1x D , ~63!

^h0
(N)&N115

11g

11g1x
^h0

(N)&N1
x

11g1x
^s0&N11 . ~64!

D. TAP equations for the pseudoinverse model

Using Eq.~52! we obtain an expression for the local fie
at site zero in the (N11)-neuron system

^h0
(N11)&N115

1

N11 (
j 51

N

(
m,n

j0
m@C(N11)#mn

21j j
n^sj&N11

5
1

11g
^h0

(N)&N11 . ~65!

Using Eqs.~64! and ~65!, we obtain

^h0
(N11)&N115

^h0
(N)&N

11g1x
1

^s0&N11

11g1
~11g!2

x

. ~66!

Substituting Eq.~66! into Eq.~63!, we obtain the TAP equa
tions for the pseudoinverse model
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^si&5tanhFbS (
j Þ i

Ji j ^sj&2
x

~11g!~11g1x!
^si& D G .

~67!

E. Adding a memory pattern to the Hamiltonian

The evaluation ofx is done by using the cavity method
second time, adding a memory pattern to the Hamilton
Details of the calculation are explained in Appendix B. T
result of the calculation yields

x5
C211A~12C!214aC

C112A~12C!214aC
2g, ~68!

where

C5b~12q!. ~69!

V. DISCUSSION

Previous application of the cavity method to the Hopfie
model@5# yielded TAP equations with a cavity term that w
in disagreement with the equations derived by perturba
theory @6#. Mézard et al. @5# applied the cavity method on
soft variables generated by a Hubbard-Stantonovitch tra
formation of the original Ising system. However, the relati
between the statistics of the soft variables and the spin v
ables must be treated with care. If these relations are ta
appropriately, then their method yields the same equation
derived by perturbation theory. Here we have avoided us
the Hubbard-Stantonovitch transformation all together a
applied the cavity method directly on the Ising spin syste
In addition, we have shown that the correct TAP equatio
can be derived by the cavity method without additional
sumptions about the structure of the minima or their ene
distribution.

We now briefly discuss the correspondence between
replica theory and the TAP equations. In the SK model, t
correspondence has been extensively studied@5#. Assuming
an ultrametric structure of the TAP solutions yields a me
field theory that is equivalent to Parisi’s replica solution@5#.
A similar study for the neural network models has not be
made. Here we note two points of agreement between
theories. Equations~35! and~43! for the Hopfield model pre-
dict a second-order transition from a paramagnetic s
^si&50 to a spin-glass state in which^si& are different from
zero but they do not have a macroscopic overlap with an
the patterns. This transition occurs at a temperatureTg51
1Aa, as was shown by Nakanishi and Takayama@6#, which
agrees with the replica theory@1#. In the case of the pseudo
inverse model, Eqs.~67!, ~45!, and~46! admit a solution of
the form

^si&5mj i
m . ~70!

This corresponds to a retrieval state in which the sign of
local magnetizations is identical to the patternm. Substitut-
ing this ansatz in Eq.~67!, and using Eqs.~B15! and ~A4!
yields the following mean-field equation form:

m5tanh~bJm!, ~71!
.

n

s-

ri-
en
as
g
d
.
s
-
y

e
s

n

n
he

te

f

e

where

J5
1

2C
@11C2A~12C!214aC#. ~72!

These equations agree with the results of the replica the
for the retrieval state in this model, see Eqs.~3.12! and~3.8!
in Ref. @9#. In conclusion, we believe that the TAP equatio
derived here for neural network models of associat
memory are equivalent to the replica theory for these m
els.
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APPENDIX A: ESTIMATION OF g

We now calculate the value ofg for a typical choice of
j ’s. For largeN, we can evaluate

g5
1

N
Tr@C21# ~A1!

To calculate the trace ofC21, we use the result for the ei
genvalues spectrum of the Hopfield matrix; forJi j

5(1/N)(m51
aN j i

mj j
m(12d i j ) we have

rJ~l!5H r0
J~l!1~12a!d~l1a!, a<1

r0
J~l!, a.1,

~A2!

r0
J~l!5

A4a2~12l!2

2p~l1a!
. ~A3!

In our case, we takea851/a and add the diagonal term
Performing some algebra we obtain

g5
a

12a
. ~A4!

APPENDIX B: CALCULATION OF X

The partition function of a system ofN neurons withp-
stored memory patterns takes the following form:

Zp5Tr$si %
expS 1

2
bN (

m,n51

p

mmCmn
21mnD

5Tr$si %E )
m51

p

dxm expS 2
1

2 (
m,n51

p

xmCmnxn

1AbN (
m51

p

xmmmD . ~B1!

Adding a new pattern$j i
0% i 51

N to the Hamiltonian, we can
write
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Pp11~x0 ,y0 ,m0!5
1

z
expS 2

1

2
x0

22x0y0

1AbNx0m0D Pp~y0 ,m0!, ~B2!

wherey05(m51
p C0mxm . AssumingPp(y0 ,m0) is Gaussian

we can write

Pp~dy0 ,m0!5
1

z8
expF2

1

2
~dy0 ,m0!S a b

b cD S dy0

m0
D G ,

~B3!

S a b

b cD
21

5S ^~dy0!2&p ^dy0dm0&p

^dy0dm0&p ^~dm0!2&p
D , ~B4!

wheredy0[y02^y0&p . We expectm0 not to condense, i.e.
^m0&p50. From Eq.~B1!, $xm% are random variables with
Gaussian fluctuations aroundam , hence

^dxmdxn&p5bN^damdan&p1Cmn
21 , ~B5!

^dxmdmm&p5AbN^damdmm&p . ~B6!

Using Eqs.~B5! and ~B6! we obtain

^~dm0!2&p5
1

N2 (
i , j

j i
0j j

0^dsidsj&p5
1

N
~12q!, ~B7!

^~dy0!2&p5(
m,n

1

N2 (
i , j

j i
0j j

0j i
mj j

n^dxmdxn&p

5
1

N (
m,n

Cmn^dxmdxn&p

5b(
m

^dmmdam&p1a, ~B8!

^dy0dm0&p5
1

N2 (
i , j ,m

j i
0j j

0j j
m^dxmdsi&p

5(
m

1

N
^dxmdmm&p5Ab/N(

m
^dmmdam&p .

~B9!
A

.

a

Integrating overy0 in Eq. ~B2! yields

Pp11~dx0 ,dm0!5
1

z9
expF 2

1

2
~dx0 ,dm0!

3S 12
1

a
2AbN2

b

a

2AbN2
b

a
c2

b2

a

D
3S dx0

dm0
D G . ~B10!

Here dm05m02^m0&p11 and dx05x02^x0&p11. We de-
noteU5b(m^dmmdam&p .

Using Eqs. ~B7!, ~B8!, and ~B9! we calculate
^dx0dm0&p11 from Eq. ~B10! in terms ofU, and then solve
the self-consistent equation

U5aAbN^dx0dm0&p11 ~B11!

yielding

U5
1

2
@C211A~12C!214aC#, ~B12!

where

C5b~12q!. ~B13!

From Eq.~B10! we obtain

^~dx0!2&5
U

a~C2U !
, ~B14!

hence

x5
1

N (
m

$^~dxm!2&2@C21#mm%5
U

~C2U !
2

1

N
Tr@C21#.

~B15!
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